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Abstract 

r 

The emergence of complexity in many-body systems is illustrated by the 
progression of equilibrium states of N charges confined to the surface of a 
sphere. This is an electrostatic problem with spherically symmetric inter- 
actions and boundary conditions. For increasing values of N, the equilib- 
rium solutions break this symmetry and differentiate into sets of complex 
figures. For instance, states with non-vanishing dipole moments appear when 
N = 11,13,19, etc.; the first enantiomeric or chiral state appears at N = 15; 
and robust metastable states are encountered with increasing freqency for 
N = 16,22,32,35,37 . . . . Computer searches show that when N N 100;sets 
of 56-90 metastable states-separated by energy differences of about O.OOl%- 
are the norm. The capture basins, or statistical weights, of some met&able 
states are larger than those of the ground state. For N 2 80, the energy 
variations of individual charges within configurations exceed the energy dif- 
ferences between configurations by factors of 10-50. Angular comparisons show 
that energetically similar states generally have completely different configu- 
rations. Moreover, the geometrical patterns of the charge distributions tend 
to become increasingly irregular for larger values of N. Nevertheless, there is 
statistical order in the overall angular distributions, and isolated regular con- 
figurations appear at a series of N values extending up to N = 112. Since the 
dipole moments of all known equilibrium states (for N 5 112) are bounded 
by 10-2, whereas the average dipole moments of spherical random N-point 
distributions grow as 0.92 Ni, it is clear that the geometric irregularity of the 
Coulomb states coexists with complex order. Common features of the spher- 
ical Coulomb and Tammes problems, as well as other cooperative models 
such as Ewing arrays and vortex lattices, suggest several general conjectures 
concerning the behavior of complex systems. 
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1. Iutroduction 

Symmetry and stability criteria are useful for describing charge configurations in a great 

variety of situations ranging from J.J. Thomson’s original plum pudding model of the atom to 

current investigations of carbon and indium fullerene cages [l-5]. In particular, the O(4) 

symmetry associated with the Coulomb interaction underlies both the ,standard Bohr-Pauli level 

structure of the elements as well the nested charge rings of the old plum pudding model [6-81. 

This robust symmetry constraint enabled Thomson to establish the first quantitative connections 

between recurrences in the patterns of charge distributions and the periodicities of Mendeleyev’s 

chemical table. The most striking recent success of symmetries in charge configurations is the 

discovery that Cso can exist in a stable form resembling a truncated icosahedron [9]. However, 

since this is the last but one of the 13 Archimedean polyhedra, there are no further regular 
r 

strucbures of this kind that can serve as templates for more complex chemical cages. Oue method 

of extending the inventory of geometric figures is to use computers to search for the static 

equiliirium states of N equal point charges on the surface of a sphere. In contrast to the plum 

pudding or ‘jellium’ model, where Thomson and Fiippl [lo] started with the presumption that 

the equilibrium states would be a series of symmetric nested rings, locally stable solutions of the 

surface Coulomb problem can be obtained without imposing any aptiuri constraints of symmetry 

or other types of strnctural regularities. For small values of N, the results confirm the intuitive 

expectation that the charge configurations are symmetric and unique. They are also extremely 

robust because for the special values N, = 2 - 6, 12, the equilibrium configurations remain 

invariant if the Coulomb law r* is replaced by the limiting form P, n 4 = [ll]. This ‘ultra- 

repulsive’ interaction is the basis of the biological T-s problem of finding arrangements of 
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N points on the surface of a sphere with the largest possible minimum distance between any pair 

[12 - 151. Since exact solutions of the Tammes problem are known for the set 

N; = 2 - K&24, this invariance also yields optimum configurations for the surface Coulomb 

problem for the particular values NF = 2 - 6, 12. Of course, these geometric solutions coincide 

with the computer generated patterns. If the mutual charge repulsions are described by 

logarithmic interactions rather than a power law, the corresponding equilibrium solutions for 

N = 2 - 6, 12, are again given by the Coulomb set G [lq. Similar configurations --- except I 

for a few changes in length scales - appear in the jellium model [lo]. All of these equivalences 

suggest that in cooperative systems with few degrees of freedom symmetry principles alone may 

be sufficient to determine the character of the equilibrium states. However, when N > 6, the 

sets of equilibrium configurations for these four different force laws lose their resemblance. 

These divergences illustrate the symmetry breaking effects associated with the emergence of new 

levels of complexity in larger systems. 

In the range 50 s Ns 112, the surface Coulomb problem has at least 1945 locally stable 

solutions. These configurations may be classified with the help of several measures based on 

geometric and energy criteria. Specifically, for any particular value of N, there are a total of 

N(N-1)/2 angles between the 3 vectors that specify the locations of the charges on the surface 

of the sphere. A simple measure of the geometric regular@ of a charge distribution is then 

given by the angub diversity ratio (%) 
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D,(N) z 100 number of distinct angles 
* N (iv - 1)/2 

(1.1) 

Clearly, large values of D, (percentages exceeding 96% occur frequently when N > 50) indicate 

irregular configurations that cannot be identified with any of the 123 standard types of convex 

polyhedra [ 17, 181. This irregularity also implies that the vertices, or charge positions, of these 

Coulomb states cannot be interchanged by means of any of the usual rotational symmetry 

operations. Nevertheless, lack of congruence in vertex separations or edge lengths doesn’t 

exclude the persistence of other kinds of order. A quantitative measure of the difference between 

random and geometrically irregular distributions of N points on the surface of a sphere is given 

by the dipole moment or center of charge 119, 201; i.e., 

i?(N)=5 5. 
i=l 

(1.2a) 

In particular, for a unit sphere, where I<] = 1, the average value of the dipole moment of a 

random configuration of N unit charges increases with N, 

(1.2b) 



On the other hand, the dipole moments of all the equilibrium Coulomb states, for N s 112, are 

bounded by lo’, and typically fall in the range 10D5 z [C&V) I T 10e3. Obviously, this is an 

orders-of-magnitude reduction from the random values. The regularities of the Coulomb states 

are even more apparent in cases where the angular diversity ratios are small, say D, s 10%. 

The computer searches show that there are at least 23 geometrically ordered configurations of 

this kind for a series of N values between 24 s N zz 112. None of these patterns match the 

Archimedean polyhedra. For instance, there are four semi-regular Archimedean polyhedra with 

24 vertices; and in fact one of them, the snub cube, resembles the ordered Coulomb state with 

24 charges because both configurations have 38 faces, 60 edges, and occur in enantiomeric 

forms. However, all edges of the snub cube have equal length and subtend an angle of 43.68’ 
r 
at the center of the sphere, whereas the 60 edges of the Coulomb configuration are split into 

three sets with approximately equal lengths: 24 subtending an angle of 42.O70, 24 with an angle 

of45.04’, and 12withanangle0f45.71~. Additional comparisons for other sets of states show 

that this symmetry breaking is pervasive: there is a general trend away from strict geometric 

regularity in larger systems. 

The emergence of complexity is also reflected in several physical effects. For example, 

the electrostatic interaction energy of N unit charges, E(N), can be represented as the sum of the 

partial energies associated with the individual charges, Ei (N); i.e., 

E(N) = 5 Ej (N); 
i=l 

Ei(N) = ; -5. I< - 51 -l. 
/+I 

(1.3) 



This energy sharing is completely symmetric for the equilibrium states of the surface Coulomb 

problem in small systems; that is, E#V) = E(N)/N for N < 5. However, when N = 5, the 

equilibrium arrangement is a triangular bipyramid with three charges positioned at the vertices 

of an equilateral triangle arourid a great circle, e.g. the equator, and the other two charges at 

the north and south poles. Since the distances between pairs of equatorial charges exceed the 

distance from the equator to either pole, Eq. (1.3) implies that each of the two polar charges has 

a slightly greater partial energy than the equatorial charges. This energy splitting tends to 

increase for larger values of N; until at N = 59 the state with the greatest capture basin, or 

stabs&l weight, is so asymmetric that ail of the charges have different partial energies. Beyond 

this point irregular states with angular diversities at the maximum value D, =lOO%, c$(l.l), and 

23 complete splitting of all partial energies occur with increasing frequency. 

The transition from symmetry to asymmetry also appears in a shift of the center of 

charge, Eq. (1 A). For all N < 11, the equilibrium configurations of the surface Coulomb 

problem are sufficiently regular so that the center of charge coincides with the center of the 

sphere. This situation is analogous to the absence of permanent electric dipole moments in 

symmetric atomic and molecular charge distributions [21]. But parity arguments alone cannot 

exchuie the existence of dipole moments in static situations. In the surface Coulomb problem 

this symmetry is broken at N = 11, where the equilibrium pattern consists of an irregular 

equatorial pentagon and two tilted isosceles triangles in the northern and southern hemispheres 

[22]. This state has a moment given by l&l)] = 0.0132; which implies the existence of an 

intrinsic pattern ‘direction’, as well as a non-vanishing electric field at the center of the sphere. 
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Another kind of dipole symmetry breaking appears when the charge interactions are varied. For 

instance, if the Coulomb law is replaced by an jc - 5) -’ force, the dipole moments of all of 

the corresponding equilibrium configurations vanish identically [ 161. 

A common feature of all three spherical surface problems -- associated with the 

15 - q-n, It = 1, 2, and= (T ammes) interactions - is the occurrence of enantiomeric states 

beginning at N = 15. This division marks another threshold of structural complexity. For 

example, if‘computer searches for the equilibrium states of the surface Coulomb problem are 

started at KY random initial positions of 15 points, the trials will lead with about 50% - 50% 

probability to two geometrically distinct term&l conf&urations, eG (15) and c (15), having 

precisely the same energy. These pairs of states are labeled ‘left’ (L) and ‘right’ (R) because 

they can be transformed into each other by an improper isometry consisting of a rotation 

combined with a reflection in a plane perpendicular to the axis of rotation [13]. It is intuitively 

plausible that there should not be any statistical bias favoring either the ‘L’ or ‘R’ states if they 

are derived from a random mix of initial states by a symmetric process. But in computer 

simulations the ‘L’ and ‘R’ labels may be regarded as a deterministic binary code that can be 

incorporated into the pseudo-random number algorithms that specify the initial states; and this 

information can create a preference. SpecificalIy, if L (15) denotes a computer generated 

initial state of 15 charges, and M is an energy minkking algorithm, then it can be shown that 

the mappings M [c”, (1511 4 e (15) induce a correspondence between the ‘L’ and ‘R’ 

enantiomers of the equilibrium configuration and two disjoint sets of initial states, 
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bC$& (15)) cutd ic (15)). These sets of initial states are also enantiomeric because they occur 

in ‘L’ and ‘R’ variants -- each pair related by an improper isometry, and degenerate in energy. 

In general, the points that make up the initial states are distributed uniformly over the surface 

of the sphere by sets of pseudo-random number generators. The chiral.i~ of the N = 15 states 

then implies that the initial angular coordinates of the charges --- and the corresponding sets of 

pseudo-random numbers --- can be labeled by a binary ‘L’ and ‘R’ alphabet. By choosing 

appropriate sequences of states it is therefore possible to construct any desired string or ‘message’ 

composed of L’s and R’s. This information, in turn, may be encoded in the pseudo-random 

number generators by algorithms that retrodict any given sequence [23]. The net effect is that 

either ground state, eG (15) or eG (Xi), can be generated by dekrminik means although the 

initial charge configurations are a race& mix of L and R enantiomers. This method of choice 

by-passes some of the controversial issues of biological stereochemistry [24, 251. 

The equilibrium states of the surface Coulomb problem exhibit many other types of 

structural transitions. It almost seems as if the addition of every new charge leads to another 

level of complexity. Basically, this diversity is due to the long range of the Coulomb force: the 

stable N- body configurations are the result of all N(N-1)/2 charge interactions and not just 

nearest neighbor forces. Similarly, the domain structures and hysteresis of magnetic Ewing 

arrays arise from the long reach of mnltipole forces [26]. Finding the stationary states of these 

cooperative systems by analytical means is generally very difficult. ‘Greedy’ algorithms that 

search for global extremals by piecing together a series of local ‘best’ choices can go astray even 

in simpler packing and covering problems [27J. For instance, the arrangement of N congruent 
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spheres whose convex hull has the smallest volume is a straight line or sausage for all N s 56; 

but for larger aggregates of spheres the optimum packings have entirely different shapes [28]. 

In a similar vein, the Tammes problem is equivalent to finding the maximum density - or 

fraction of covered area -- when N congruent spherical caps are packed on the surface of a 

sphere. Since any cap can touch at most five other caps, this appears to be a nearest neighbor 

problem with simple contact forces [29]. But the global constraint that all the caps must fit 

together on the surface of the sphere, in a not necessarily rigid packing, makes this a hard 

problem. The geometric methods used to construct exact solutions for the set 

NTQ =2 - 12,%, cannot be extrapolated to algorithms valid far arbitrary N. The best results 

available for N s 90 have been obtained by computer searches that simulate the non- 

Ovdpphg caps with aa ultra-repulsive I< - 5 I-“, n = 1, 310, 720 potential [XI]. The 

surface Coulomb problem is still more complicated because both self-consistent boundary 

conditions and long range forces determine the extremals. Exact results for this situation are 

sparse: Topological lower bounds for the number of equilibrium states are known only for 

N < 4 [31]; and local stability has been verified for only a few symmetric ring patterns [32]. 

Computer studies of this problem are complicated by the existence of many metastable states 

separated by very small energy differences. In the range N s 112, this requires double precision 

computations, high statistics searches starting from many random initial configurations, and 

numerical stability checks. But even with these precautions some states may be missed; and for 

large N, roundoff errors affect the correspondence between analytical and numerical stability 

criteria. These ambiguities are also implicit in computer simulations of the formation of ionic 
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‘crystals’ in electromagnetic traps [33, 341, and the relation of protein structures to amino acid 

sequences [35-371. 

Prior work on the surface Coulomb problem, and computer results extending to N = 65, 

are discussed in references [38] and [39]. The values of the ground state energies have 

meanwhile been coniirmed by several independent calculations [40-42, 161. The Coulomb 

configurations have a number of practical applications: these include problems in structural 

chemistry [43,44], the design of multi-beam laser implosion drives, and the optimum placement 

of communication satellites. Comprehensive summaries of related packing and covering 

problems - with applications to error-free data transmission --- are given in [45]. Some 

quantum mechanical extensions are discussed in [46-48]. 

‘A. Contents 

In Section 2A we set up the surface Coulomb problem for N equal point charges, and 

derive a simple relation between the partial energies associated with the individual charges and 

the dipole moments of the equilibrium states. The computer algorithms and conventions for 

orienting the charge confQurations are described in Section 2B. Tabulations of the results for 

the range 2 s N s 112 are given in Appendix B. Trends in the number of locally stable states 

M, found by the computer searches, are summarized in Section 3A. The results indicate an 

exponential increase in the number of states, i.e., M - exp (0.05 N>, for N r 50. Energy 

relations for the random initial states, ground states, met&able states, and the partial energy 

distributions within states are discussed in Section 3B. The ground state energies can be 

represented by a semi-empirical expression ofthe form E (N) = 0.5 N2 - 0.55 N312 over the 

11 



entire range 6 < N s 112. Geometric properties of the equilibrium configurations are 

considered in Section 4: These include the distributions of dipole moments and chiral states in 

Sections 4A and 4D. Measures of order, such as the angular diversity ratios, and comparisons 

with Tammes configurations and regular polyhedra are summarized in Section 4B, 4C, and 4E-1. 

Some general conjectures concerning focally stable states of complex systems are discussed in 

Section 5. The corresponding analytical and numerical stability criteria are reviewed in 

Appendix A. 

A. 

2. The Surface Coulomb Problem 

Analytic Formulation 

The set of N unit vectors (5, 1 s i s N) describes the position of N point charges 

ctmshned to lie on the surface of a unit sphere. If all charges are equal the corresponding 

dimensionless Coulomb energy is 

E(N) = 5 5 Irf: - q-l. (2-l) 
i=l jai 

The static equilibrium configurations of this system are specified by the requirement that the total 

force Pi acting on the i* charge is parallel to <. This condition implies 

j = 1 
I*& 

12 

(2.2) 



where Q(N) is the partial energy associated with the iti charge, cf. (1.3). The equilibrium states 

of the surface Coulomb problem are special cases of the central configurations of the (non- 

relativistic) gravitational N-body problem [49-5 11. Clearly, the total force on the sphere vanishes 

(2.3) 

because the double sum is odd under an interchange of indices. If all the partial energies are 

equal, i.e., K(N) = E(N)/N, Eq. (2.3) implies that the corresponding dipole moments also 

vanish, cf. (1.2a): 

(2.4a) 

But this is only a sufficient condition. There are many equilibrium configurations for which 

i Ei(N) c = 5 5 = 0, 
i=l i-1 

(2.4b) 

even though Ei (N) f Ej @I) for at least one pair of indices. If the interaction energies of the 

charges are logarithmic, Eq. (2.2) is replaced by 
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(2.5) 

This expression shows that all the equilibrium forces have the same magnitude and - in analogy 

with (2.4b) -- the corresponding dipole moments vanish identically [ 163. These constraints 

indicate that the equilibrium configurations of the surface logarithm problem generally tend to 

be more regular than the equilibrium states of the surface Coulomb problem. In both cases the 

equilibrium coordinates c satisfy sets of linear relations, such as (2.3) and (2.4b), which are 

vectorial generalizations of cryptographic knapsack problems: these are known to be 

computationally difficult, or NP - hard [52]. 

r 
The locally stable equilibrium configurations of the surface Coulomb problem satisfy the 

additional constraint that the associated energies are local minima. Specifically, if the charge 

positions are described by spherical coordinates - the co-latitudes 0 s & s x, and longitudes 

-x s ei 5 x - then the Coulomb energy (2.1) is E(t#+, e,), 1 s i s N; and the equilibrium 

condition (2.2) is equivalent to 

aE aE -=- 
%i ai 

= 0, 1~ is N. (2-W 

If n,, 1 S K 5 2N ++ $i . . . &, 8, . . . Q, then a sufficient condition for the local stability of 

the solutions of (2.6) is that the associated Hessian matrix 
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(2.6b) 

is positive definite. See Appendix A. Physically, this simply means that tangential restoring 

forces, i.e. pcT” . < = 0, counter small displacements from equilibrium. In potential theory 

these locally stable con.Qurations are known as Fekete points, and some asymptotic estimates 

of the rate of approach to the limit of continuous charge distributions are available [55,56]. In 

Section 3B these methods are used to constnzt an expression for the ground state energy E(N). 

Both in the Coulomb and dipole problems analytic solutions of the equilibrium equations 

(2.6a) and evahration of the associated Hessians (2.6b) becomes tedious for as few as four : 

interactbg objects [32,571. At present, the only practical way of surveying the locally stable 

states of the Coulomb systems for larger values of N is to use computers to find energy minima. 

However, since the number of minima appears to grow exponentially with N, the energy surface 

W,s 8,; . . . . ; $,, t$J becomes progressively more convoluted, and for N > O(102) has many 

small hills and valleys. This leads to fundamental difficulties in mapping out the topography of 

the energy s&aces: It is necessary to distinguish genuine physical features such as minute ridges 

or clefts arising from the competition among the N(N-1)/2 charge interactions from numerical 

artifacts such as corrugations due to roundoff or truncation errors. Furthermore, even high 

statistics computer searches can miss some minima with small capture basins or special 

symmetries. The net result is that computer trials can both over - and underestimate the actual 

number of locally stable states. Analytic and numerical stability criteria for multidimensional 
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energy surfaces are discussed in more detail in Appendix A. 

B. Computer Algorithms 

Most of the numerical work was carried out with the ACPMAPS supercomputer at 

Fermilab. This is a parallel processing machine utilizing 600 double precision nodes. The 

computer searches for the locally stable states of the surface Coulomb problem were started from 

sets of points randomly distributed over the surface of the sphere - specifically, lo” random 

starts for every value of N in the range 2 s N 5 64; 2000 starts for each successive N in the 

interval 65 s N s 108, 111; and 1000 starts for N = 109, 110, and 112. The initial charge 

confQurations were described by sets of spherical coordinates 5 (Qi , 0,), where each angle is 

represented by a 24bit, or 7 decimal, pseudo-random number normalized to yield a uniform 

spherical distribution [19, 201. The equilibrium states were found by allowing the points to 

move in the direction of the forces acting on them subject to the constraint of remaining on the 

surface of the sphere. The steepest descent method of iterating the map 

fl: -, $ = (5 + y Pi)/& +y FiI, with y chosen to maximize convergence, was used for this 

problem by Claxton and Benson [43]. In the limit y + a+, the update formula reduces to 

Fi -+ $ = Pi IlPJ, which is an over-relaxed update step with good convergence. If this step 

is so large that the { $1 configuration has a higher energy than the { ri) state, y is automatically 

adjusted downward for that step until the energy does decrease. The iterations are terminated 

when the energies stabilize within the machine precision of one part in 2” ( -14.4 decimals). 
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Since these computations involve the cancellation of large forces it is essential to use at least 48- 

bit precision. Conjugate-gradient methods do not improve this technique because of the highly 

convoluted structure of the energy surface. 

In order to compare the geometric properties of the equilibrium states it is useful to rotate 

the configurations into a standard set of orientations. According to (1.3) the N charges of a 

locally stable state may be labeled by their partial energies. Suppose that these are ordered in 

a nondecreasing sequence, i.e. 

E,(N) s 4 (N) i E3 (N) s . . . . . 5 EN(N). (2.7) 

As a first step in orienting, pick a charge with the lowest partial energy - ifE,(N) = E&V), 

etc., this won’t be a unique choice! - and rotate the configuration so that this charge is placed 

at the north pole, 8 = 4 = 0. Consider next the set of charges with the second lowest partial 

energies: for instance, &, E,, &, if (2.7) has the special form 

El = 4 < E3 = Es = Es < Es . . . . . 5 EN. (2.8) 

Find the (not necessarily unique) charge in this set closest to the north pole, and rotate the entire 

configuration so that this second charge is at zero longitude, 8 = 0. If the second charge . 

happens to be at the south pole, repeat the process with another charge from the set with the 

third lowest partial energies. This scheme is adequate because the orientations are unique for 
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irregular configurations, and the ambiguities are irrelevant for comparing symmetric 

configurations. 

The numerical reproducibility of the computations can be checked by comparing the 

results obtained from minimizing runs starting at different random initial configurations. For 

instance, for N = 84, the reproducibilities of some of the typical values that describe the 

characteristics of the configurations --- e.g., the chiral states with the largest capture basin --- 

are: 

total energy w. (1.3) 3103. 478 717 096 13 digits (2.9a) 

lowest partial energy Eq. (1.3) 36. 885 477 8 digits (2.9b) 
. 

typical angular 9 0. 039 852 25 7 digits 
(2.9~) 

coordinates (rad.) 4 0. 010 146 18 7 digits 

The disparity in significant digits between the total and partial energies is not due to statistical 

fluctuations or roundoff errors. Rather, it indicates that the computer runs end in a multiplicity 

of shallow stability valleys that merge into the local energy minima. The relation of these 

‘eigenmodes’ to the Hessian stability criterion, Eq. (2.6b), is discussed in Appendix A. The 

basic numerical consequence is that the slight variations of the individual charge positions and 

energies compensate in such a way that the total energies of the equilibrium con.ligurations are 

reproducible with a gain of five additional significant digits. 

3. Locally Stable States of the Surface Coulomb Problem 

A. Variation of the Number of States with the Particle Number N 

The computer trials show that-when there are only a few interacting charges --- that is 
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Nisintherange2 s N 5 14 --- the energy minimizing algorithm leads to a unique t.ermid 

energy E(N) for every value of N. If the associated charge configurations are rotated into a 

standard orientation by means of the conventions established in Section 2B, then the resulting 

geometrical patterns C(N) are also unique. A new level of complexity appears at N = 15. In 

this case all the computer searches still converge to a unique final energy value E( 15) = 80.670 

244 11; but the associated charge conQurations are split into a pair of enantiomeric states: Out 

of a total of 10’ randomized initial conf@rations 4958, or 50%, of the energy minimizing 

sequences temkate in a charge pattern 4?(ls) , which is the chiral transform of another pattern 

@(15) reached in the other 5042 energy minimizations. 

Three distinct termhal configuratons appear when N = 16. As indicated in Table VIII 

i in Appendix B, 75.7% of the 10’ mimizing runs end at an energy of 

E, (16) = 92. 911655 30. The frequency of occurrence of this state, or ‘capture basin’, is in 

turn almost evenly divided (37.7% and 38.0%) between two enantiomeric configurations 

e(X) and <(16). The remainin g 24.3% of the computer searches end at a locally stable 

state with a slightly higher energy, c(16) = 92. 920 353 96. The associated charge 

configuration q(16) is a symmetric set of four rings outlining a series of four relatively rotated 

squares with a charge at every comer. Figures l(a) - l(d) show these configurations in detail. 

AsummaryofthemultiplicitiesofthestatesM(N)forallNintherange 2 s N s 112 

is given in Table I. As indicated in column two of the Table, M(15) = 2 and M (16) = 3 

because every chiral configuration is counted as a separate state. Columns 3,6,9 and 11 also 

list the cnmulative number of states, -- 
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M&9 = f MO’). 
j=2 

(3.1) 

The graph in Figure 2 shows that & (N) increases at an exponential rate with N. In particular, 

ifweassumethat 

M(N) = AeVN (3.2a) 

then (3.1) implies 

MC(N) = A(e’* - e’)/(l - e-“). (3.2b) 

A Newton-Raphson optimization shows that for 70 s N s 112, Eq. (3.2b) provides an excellent 

fit of the data with 

A - 0.382. and v - 0.0497. (3.2~) ‘. 

An exponential growth of the multiplicities of states is also observed in two-dimensional 

arrays of pivoted magnets. Extensive experiments with n x n, 2 I n I 6 systems, initially 

stirred by fluctuating magnetic fields, and then allowed to settle into locally stable coniigurations, 

show that the number of distinct patterns M”(N) is of the order of 

M”(N) = 1.3 e”*19*, (3.3) 

where N = n x n is the number of magnets 157,581. Figure 2 shows that the multiplicity of 

the magnetic states grows much more rapidly than the multiplicity of the surface Coulomb states. 

This trend is plausible because the magnets &e coupled by a vector interaction that generates 

complex domain structures. 
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Table I 

Variation of the Number of States M(N) with the Particle Number N 

N M(N) W(N) N M(N) WN) 

2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 
10 1 
11 1 
12 1 
13 1 
14 1 
15 2 
16 3 
17 1 
18 1 
19 1 
20 1 
21 2 
22 2 
23 2 
24 2 
25 1 
26 2 
27 3 
28 2 

. 

9 

15 

22 

31 

29 2 
30 3 
31 1 
32 2 
33 1 
34 2 
35 5 
36 2 
37 3 
38 2 
39 4 
40 6 
41 3 
42 7 
43 1 
44 1 
45 3 
46 8 
47 10 
48 3 
49 2 
50 lb 
51 3 
52 8 
53 3 
54 10 
55 11 
56 8 

43 

54 

71 

86 

110 

145 

57 9 
58 18 
59 9 
60 11 
61 13 
62 6 
63 4 
64 10 
65 6 
66 4 
67 2 
68 9 
69 9 
70 13 
71 7 
72 10 
73 10 
74 22 
75 6 
76 12 
77 9 
78 7 
79 7 
80 10 
81 19 
82 30 
83 31 
84 30 

200 

239 

276 

331 

376 

N M(N) &WI I 
85 19 
86 46 
87 39 
88 32 
89 37 
90 44 
91 37 
92 49 
93 41 
94 55 
95 35 
96 41 
97 21 
98 37 
99 24 

100 52 
101 82 
102 87 
103 52 
104 56 
105 70 
106 93 
107 -86 
108 75 
109 86 
110 93 
111 88 
112 91 

505 

703 

920 

1095 

1442 

1875 

2054 

’ Cumulative number of states, Eq. (3.1). 
b M(N) > 1 for N > 50. 
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There are several other N-body systems that exhibit an exponential growth of M(N) 

WithV - 0.07 and 0.16, [59]. In these statistical models the index v is identified with a 

‘maximum configurational entropy’, i.e. 

(3.4) 

If these results are combined with the trends of the surface Coulomb problem and the 

magnetic arrays, it is plausible to conjecture that in general the number of locally stable 

states of N-body coope&ve systems increases exponentially with N. This conjecture has 
. 

several practical consequences: If the exponential growth in the number of metastable states 

of the surface Coulomb problem continues to increase at the rates indicated in (32a) and 

(3.2c), then the numerical simulation of large systems N > 0 (Id) involves severe 

problems. For instance, the energy manifold describing the Coulomb interaction of 2000 

charges constrained to the &ace of a sphere would have about 5 x 1v2 locally stable 

minima. Implementing numerical optimization or search algorithms and testing for stability 

on such an intricately corrugated energy landscape would strain current computing resources 

beyond their limits. 

B. Fmtxgy Distributions 

The electrostatic energy of the N- particle surface Coulomb problem, Eq. (2.1), is 

given by explicitly by 
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m+,~,;...;~~, eJ = f 5 5 <sin$ siq sin2 [;(ei - 
2 i=l j>i 

fp] + sin2 [$#$ - &p-~, (3.5) 

where tj+ E [0, x] and ei rz [-A, x] are the spherical coordinates of the idh charge. 

Geometrically, I?(@, . . . eJ corresponds to a surface in a 2N + 1 dimensional space. The 

highest peaks on this energy ‘landscape’ are generated by configurations where some of the 

charges are close together. The median range of heights is associated with randomly 

distributed sets of coordinates -- such as those used as the starting configurations for the 

computer searches. The lowest points of the valleys and craters correspond to locally stable 

configurations of the surface Coulomb problem. As indicated by (3.2a) and (3.2c), the 

‘number of these local minima increases at an exponential rate with N. Geometrical 

comparisons show that for a given value of N B 1, the charge configurations associated with 

these minima all tend to be quite different. Nevertheless, the relative energy variations 

between the lowest and highest local minima are less than 0.006% even for the largest 

multiplicities of states, i.e. M(112) - 0.382 esJ6 * 100. 

B-l. Energies of Random Initial Configurations. Let E]!(N), 1 5 j s p, denote the 

energies of a set of random distributions of N charges on the surface of a unit sphere, where 

a total of p > 1 configurations are generated. Then ergodic arguments and rigorous results 

of potential theory [56] both show that the average energy of the set of random states is given 
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(E*(N)) = lim 1 5 E,k(N) =- 
P-- P j=l 

'I", (3.6) 

where N2/2 is the Coulomb energy of a continuous uniform spherical surface charge 

distribution with total charge N. Figure 3 and Table II show some of the results obtained 

from computer simulations with p = 16, and N varying throughout the range 

6 s N 2 100. The overall agreement is good although the computer generated averages 

(ER”(N)) tend to exceed the theoretical values N2/2 by about 6%. This bias is also evident 

in the asymmetric distribution of the maximum and minimum energy values about the mean 

displayed in columns 3,4 and 5 of Table II. The underlying reason is that random selections I 

of angular coordinates include charge clusters [60], and these configurations boost the energy 

values in (3.5). 

The computer simulations of the random charge conligurations can also be checked by 

calculating their dipole moments, Eq. (1.2a). In an independent series of trials the ‘random 

walk’ result (li&V)j!, - 0.9213 NW, cited in (1.2b), was verified by generating 100 

random configurations for every value of N in the range 3 s N s 64. Finally, by 

combining (1.2b) and (3 -6) in the invariant ratio 

(3.7) 
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it is possible to cross-check the consistency of the energy and dipole moment simulations. 

The numbers listed in the last column of Table II yield an average ratio of R = 1.110, which 

is within 1.3% of the theoretical vahte. 

B-2. hdhixmm Energy States. Let E,(N) denote the lowest energy states of the N-body 

surface Coulomb problem found by computer searches. A complete set of values, ranging 

fjrom X1(3) = 3” - 1.732.., to X,(112) = 5618.04488233, is listed in column 4 of 

Table VIII in Appendix B. In the absence of rigorous analytical bounds we cannot exclude 

the existence of other configurations with even lower energies. The sequence of crosses in 

Fig. 3 shows the variation of Er with N in graphical form. On this coarse energy scale 

E,(N) is a smooth monotonic function: The simple expression 

E@) = 0.!5N2 - 05513 N3/2 . (3.8) 

fitsthedatawitherrorbounds,ofO.l% atN = 2OandO.O1% atN = 112. Using EIF(N) as 

a smooth baseline, it is possible to construct scatterplots of the energy differences 

Eul (N) - El (N) on an enlarged scale. However, searches for systematic deviations 

resembling the energy peaks associated with atomic clusters [61] or analoguesof Thomas- 

Fermi oscihations [62] have not led to any conclusive results [ 16, 401. 

The ftmctional form of E,(N) has two physical interpretations [30]: (0 N2Q is the 

electrostatic energy of a uniform surface charge density - with total charge N - on a unit 
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Table II 

Electrostatic Energies and Dipole Moments of Random Spherical Charge Distributions 

10 50 47.30 7.76 99.11 

20 200 197.85 13.32 270.65 

30 450 457.74 78.76 2594 

40 800 835.63 198.4 3716 

50 1250 1317.2 288.9 4416 

64 2048 2182.0 446.5 6229 

80 3200 3428.9 630.3 7824 

100 5000 5392.4 864.1 10 886 

34.35 1.116 

164.82 1.092 

395.85 1.107 

721.6 1.204 

1143 1.092 

1920 1.050 

3047 - 

4851 

’ Eq. (3.6) 
b standard deviation 
c Es. (3.7) 

. 

sphere. ln order to recover the energy of a distribution of N point charges it is necessary to 

subtract the self-energies of a set of N uniformly charged spherical caps centered on these 

points. For N * 1, it is plausible to approximate the caps by disks. Since the energy of an 

infinitely thin disk of charge with radius a is ED = 21z~cr%z~ (0.42441, where cr is the charge 

density [63, 641; the total self-energy correction is of the order of NE, where o = (rr.a2)-*. 

For simplicity, suppose that all the disks have the same radius. Then the crudest measure of 
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the total area covered by the N disks is the surface area of a unit sphere, i.e., Nxa2 = 4x. 

Consequently, the self-energy correction is approximately given by 

NED - 0.4244 N3n; (3.9) 

which accounts for the second term in (3.8). More elaborate estimates that improve the 

agreement with the empirical coefficient 0.5513 are outlined in reference [40]. (ii) Equation 

(3.6) shows directly that N2/2 can also be identified with the average energy of a set of N 

unit charges randomly distributed over the surface of a unit sphere. In this case, the 

O(-NW) term represents the correlation energies of the ordered Coulomb equilibrium states. 

B-3. Energies of Metastable States. The most striking feature of the me&stable states is 

‘that their energies are closely bunched just above the minimum energy states. This trend 

begins with the first metastable state at N = 16: As indicated in column 4 of Table WI in 

Appendix B, the energy difference AE (16) between the two states is 

AE(16) = & (16) - E, (16) 

= 92.920353 96 - 92.911655 30, 

= 0.00869866; 

(3.10) 

and this implies AE (16)/Er(16) = 9.36 x lo-‘. Figures 1 (a) and 1 (c) show that this small 

relative energy difference is not reflected in any geometric similarities between these 
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two states. At the other extreme, for N = 112, the computer searches lead to 60 locally 

stable states with distinct energy values --- 31 of these states occur in enantiomorphic pairs. 

In this case it is convenient to describe the level spacings by the average energy difference 

(AE (112)), i.e., 

(AE(112)) = [E, (112) - El (112)]/59, 

= [5618.419 481 31 - 5618. 044 882 23]/59, 
(3.11) 

= .006 349 14; 

which indicates that the relative spacings are of the order 

(AE(112))/E,(112) - 1.13 x lo-? 

In general, (AE(iV)) = [En (iV) - El (N)]/(n - l), for N charges, where n (> 1) 

denotes the number of distinct energy levels. Table III shows the trends in level spacings for 

Table III 

Variation of the Average Energy Level Spacing (A E(N) > with the Number of Charges N 

N 

n 

(AE(N)) 

N 

n 

(AE(N)) 

N 

n 

(AE(J~) 

16 21 

2 2 

.008 70 .ooo 29 

55 56 

6 4 

.005 49 -051 22 

107 108 

52 47 

.007 38 .007 37 

22 

2 

.020 42 

57 

5 

-022 16 

109 

56 

304 94 

27 

2 

.006 99 

58 

10 

-013 08 

110 

59 

.004 01 

30 32 

2 2 

.ooo 45 -207 12 

59 60 

5 6 

.004 36 -030 07 

111 112 

52 60 

.007 16 No6 35 
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18 values of N ranging from ‘small’ to ‘large’. Since (AE(N))/E, (Iv) - 1Oa for N > 100, 

computer searches for the lowest energy states in complex systems of this type require high 

precision. In fact this energy scale is so fine that neither the empirical fit (3.8), nor its graph 

on Fig. 3, can discriminate between the ground and metastable states. 

It is also interesting to display the distribution of the density of states. Table VIII 

shows that for N = 112 there are 60 states with energies spread between 5618.044 and 

5618.419. If these states were distributed uniformly there would be about 8 states per bin for 

bins of width 0.05. With this particular choice of bin width, the first bin covers the energy 

interval 5618 AM4 to 5618.094, but according to Table VIII contains only two states. The 

second bin extends from 56 18.094 to 5618.144, and contains no states; etc. Similarly, for 

N= 111, the first bin of width 0.05 spans the interval 5515.293 to 5515.343, and contains 

only the ground state; etc. The histogram in Fig. 4 shows the combined statistics for 

N= 111 and 112 -- a total of.1 12 states. Clearly the level distribution is not uniform. 

There is a dip, or ‘level-repulsion’, in the energy bin just above the ground state; a 

pronounced maximum in the middle of the range; and an eventual decrease in the density of 

the highest levels. This density profile formally resembles the Wigner distribution of the 

energy level spacings of large ‘random’ Hamiltonian systems [ 651. 

Figure 5 shows a semi-log plot of the density of states weighted by the probability of 

occurrence. It is a straightforward matter to include this additional information. 

Specifically, for N = 112, Table VIII shows that the two states falling into the first energy 

bin between 5618.044 and 5618.094 appeared 620 times in 1000 computer searches starting 

from different random configurations. On average, therefore, their relative probability of 
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occurrence is 62%. Similarly, far N = 111, the state in the first energy bm occurred in 48% 

of the computer trials. The c&&n& average for these three states therefore is 55%; and this 

is the value indicated for the first bin in Fig. 5. The rest of the histogram can be obtained by 

similar means. 

The most conspicuous difference between the two histograms in Figs. 4 and 5 is that the 

maximum of the probability density occurs near the minimum energy states. In general, this 

implies that for values of N $ 100 there is about a 95% probability that a computer search will 

end at an energy level within 0.003% of the ground state. But it is difkult to improve this 

precision. Intherange 100 s N s 112, theaverageprobabilitythatacomputer~on 

willactuallyreachthemin.imumenergystateisonly35%. Ofcourse,thisresultdependsonthe 

choice of lninimeg algolithm. Nevertheless, similar statktical behavior occurs in the . . 

distribution of patterns in magnetic cooperaGve arrays [58]. All of these systems display the 
. 

same basic tremk as the number of interacting objects increases, the statistical weight of the 

ground state decreases. 

Thesurveyofmetastablestates .~inTableVmisbasedonatotalofabout 

7 x ld computer trials. Rare states, with probabilities of occamence as low as 0.01% are 

found for N = 21,30,42,48,58, and 61. Possibly there are additional states with still smaller 

capture basins. Certainly it is plausible that for N = 112somestatesonthehighenergytailof 

the histogram in Fig. 4 have been missed due to limited stat&tics (only loo0 energy minimizing 

searches). But the essential observation is that none of the numerical trials - for any value of 

N - has yet turned up any trace of isolated energy leveis; that is, single levels separated by 

large ‘band gaps’ (>> (AE(lV))) from the cluster of states above the ground state. It remains 
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to be seen whether this trend continues for still larger values of N. 

B-4. Energies of Individual Charges. The total electrostatic energy of a locally stable state 

of N charges can be represented as the sum of the partial energies associated with the individual 

charges. These partial energies have two interesting properties: (1) The variation of the 

individual charge energies within a configuration is generally much larger than the variation of 

the total energy between configurations. And (2), since the energy apportioned to a charge is 

simply the sum of the inverse distances to all the other charges, the variation of the individual 

energies is a measure of the geometric regularity of the configurations. Fig. 6 illustrates some 

of these energy relations. Specifically, let E, (N) denote the total energy of the m* state of N 

charges. Then a slight extension of (1.3) shows that 

E,JN) = ; 5 I< - ?I-‘, (3.12) 
jci 

where Eti (N) is the partial energy of the i* charge in the m* state of N objects. The scatter 

plot in Fig. 6 begins at N = 16. This entry corresponds to the following array of total and 

partial energies, cf. (3.10): 
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N= 16; ground state 

Fig. I(c) and Fig. l(d) 

E, (16) = 92.911 655 30 

E,,, (16) = 5.762 143 2 

A 

E,., (16) = 5.762 143 2 

E,, (16) = 5.821 923 5 

N= 16; me&stable state 

Fig. l(a) and Fig. l(b) 

b (16) = 92.920 353 96 

&, (16) = 5.793 787 0 

4 

&,* (16) = 5.793 787 0 

&,9 (16) = 5.821 257 1 

(3.131 

4 4 

E,,,, (16) = 5.821 923 5 &,lb (16) = 5.821 257 I 

The spread of partial energies in the ground state is E,,,, (16) - E,,, (16) = 0.059 780 3; and in 

the metastable state I$16 (16) - 5, (16) = 0.027 470 1. Consequently, the average maximum 

energy variation within these configurations is 0.043 625, whereas the total energy difference 

between the configurations is only I$ (16) - E, (16) = 0.008 698 66 --- smaller by a factor of 

5. This disparity is also reflected in the individual charge energies: Twelve charges in the 

ground state, E,, (16), . . . . E,,,, (16), have greater energies than any of the charges in the 

metastable state! 

In the general case, when there are n distinct energy levels associated with N charges, 

the average maximum variation of partial energies within tbe configurations (A Em (ZV)) is given 
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Table IV 

Variation of the Partial Energy Differences (A E,(N)) Within Configurations 

(3.14) 

N 16 21 .22 32 55 60 111 112 

(AEm( -043 .055 -030 -054 -117 .098 .211 .208 

R(Wb 5.01 189 1.44 0.26 21.3 3.19 29.5 32.7 

8 Eq. (3.14) 
b Eq. (3.15) 

Table IV shows that this energy spread is a slowly increasing function of N. The differences in 

partial and total energies can be combined in the ratio 

R(N) = 
(AE’WJ) _ Euergy Merences Within Configurations 

(AEO) 
(3.15) 

Energy Differen= Between cordigllrations 

which is the ordinate of the scatter plot in Fig. 6. Some representative values are also listed in 

Table IV. Clearly most of the points in Fig. 6 fall into the band between 5 < R(N) < 50. 

This demonstrates that the scale of total energy differences between successive metastable states 



is much finer than the variation of the individual charge energies. A complementary pattern is 

exhibited by the stabilities: Eqs. (2%) and (2.9b) show that the numerical reproducibibties of 

the total energies of the configurations generally exceed the reproducibilities of the partial 

energies by five orders of magnitude. 

The contrast between individual and collective energies is also illustramd by the following 

example: Suppose that the partial energy of a charge has the value 36.935 241. Then it is easy 

to verify from the computer results that this charge cannot be a constituent of any locally stable 

state with either N s 83 or N L 85; it must belong to one of the 30 configurations with 

N = 84. However, there is no finer scale of energy rankings to help in locating this charge. 

Everyone of the 30 states is comprised of sets of 84 partial energies that straddle the value 

36. 935 241. Consequently all of these states have to be examined in detail before it can be 

established that 36.935 241 umzzponds to E,, (84)--thepartialenergyofthe376chargein 

the lo” equilibrium state of 84 objects. This assignment is unique because all 84 partial energies 

in the 10” state are dSerent, and E,, (&I)*E,(&4)foralll s is IMandm* 10. The 

only re making ambiguity is geometric: as indicated in Table VIII, E,, (84) has two enantiomeric 

COllfigurations. 

Equation (3.12) shows that the partial energy of a charge is proportional to the sum of 

its inverse distances to all the other charges. This implies that highly symmetric equilibrium 

configurations that ‘look alike’ tim every charge or vertex have unique partial energies, i.e., 

IT+(N) = E,JN)/lj for all 1 s i s N. @deed, this is the case for three of the Platonic solids, 

the tetrahedron, octahedron (dipyramid), and icosahedron, whose vertices are the equilibrium 

positions of the surface Coulomb problem for N = 4, 6, and 12 respectively. The partial 
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energies are also unique for N =8 and 24, even though these configurations are not included 

among the standard semi-regular (Archimedean) polyhedra. Clearly, kss symmetric charge 

distributions will have a greater variety of reciprocal distances, and this dispersion can be used 

as a measure of geometric hregukity analogous to the angular diversity ratio (1.1): If 

n, (N, m) denotes the number of distinct partial charge energies that occur in the m* state of N 

objects, then the corresponding energy dive&y ratio (%) is given by 

D,(N,m) = 100 
nc WA 

N l 

(3.16) 

In the range 2 s N s 112, the computer trials yield 1248 equilibrium states with distinct 

enegks; 806 of these states occur in enantiomorphic pairs, cf. Table I. The associated energy 

diversity ratios are listed in column 9 of Table VIII in Appendix B, and displayed graphically 

in Fig. 7. Two trends are evident: (i) D,(N, m) is a slowly increasing function of N. The fkst 

configuration that is so irregular that all of its partial charge energies are diRerent occurs at 

N = 35; i.e., D,(35,4) = 100%. By the time N reaches 102,34 out of a total of 54 IocaIly 

stable states have energy diversity ratios in excess of 95%. This is another confirmation of the 

basic trend that increasing complexity is correlated with greater geometric irregukty. (ii) 

Figure 7 also shows that the energy diversity ratios tend to cluster in a series of bands near 17%, 

24%, 50%, 75%, and 100%. It is plausible that this regularity is co~ected with a deeper 

symmetry of the surface Coulomb problem. 
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4. Geometric Properties of the Surface Coulomb States 

The locally stable solutions of the N-charge surface Coulomb problem are constrained 

solely by spherical boundary conditions and the O(4) symmetry of the Coulomb interaction. The 

exponential growth of the multiplicity of solutions - M(N) - e”.OsN, Eq. (3.2.a) -- shows that 

these restrictions are compatible with a great variety of geometric structures. Only in the 

simplest systems is there an overlap with the criteria of strict regular@ that underlie the classical 

them&s of polygons and polyhedra [13]. For instance, the Coulomb solution for N = 3 

corresponds to an e@ateml triangle inscribed in a great circle: this is the simplest example of 

a regzdurpolygon, i.e., a plane polygon with equal interior angles and equal sides. Similarly, 

reg&rpoZyhedra are,bounded by congruent regular polygons and have congruent vertices. Only 

$e solutions for N = 4 (tetrahedron), N = 6 (dipyramid), and N = 12 (icosahedron) share this 

high degree of symmetry. The other Platonic solids, the cube with 8 vertices, and the 

dodecahedron with 20 vertices, do not conespond to solutions of either the surface Coulomb or 

Tammes problems. The semi-reguhrpolyhedra are also bounded by regular polygons with 

congruent vertices and edges, but the polygons do not all have to be congruent to each other. 

This class of objects includes the &teen Archimedean polyhedra as well as infinite sets of semi- 

regular prisms and anti-prisms. None of the surface Coulomb configurations match any of these 

semi-regular polyhedra. In particular, the well known ‘buclq bail’, or truncated icosahedron, 

associated with Ca is not a solution of either the Tammes or surface Coulomb problems for 

N = 60. 

Every Archimedean polyhedron has a dual formed by joining a point that is above the 

center of each face of the polyhedron to equivalent points above all the neighboring faces. The 
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lines connecting these points are constrained to intersect the edges of the original polyhedron. 

The resulting duals ofthe semi-regular poZyk&a have congruent faces but none of these faces 

are regular polygons. These duals are also less symmetric than the Archimedean figures because 

not all of their vertices lie on a single sphere; consequently none of the dual polyhedra coincide 

with any of the solutions of the surface Coulomb problem [66,67,68]. However, there is an 

interesting ‘near miss’ for N = 32. Thepenrakis ab&xahedron is a convex polyhedron with 32 

vextices, 90 edges, and 60 f&es composed of congruent isosceles triangles: This object is the 

dud of the truncated icosahedron which has 60 vertices and 32 f&es. The two types of edges 

of the pentakis dodeddron in- angles of 

sin-’ (3 = 0.729 727 656 

- sin-’ (3 -tan-‘(Z)] = 0.652 358 139 

(4.1) 

as seen from the center of symmetry, i.e., the origin of the inter-sphere [67,68]. These values 

agree to within six significant figures with the corresponding angles of the minimum energy 

Coulomb conf&uration for N = 32 (see the entries on lines 13 and 14 of Table v). A pictorial 

comparison of the pent&is polyhedron and the Coulomb configuration would show that they are 

essentially identical. But pent&is breaks strict spherical symmetry because its 32 vertices are 

distributed over two concentric spheres whose diameters differ by 2.58%. Consequently, the 

ratio of the two edge lengths of the pent&is dodecahedron, 1.127 322, deviates by 0.77% from 

the corresponding edge ratio, 1.118 600, of the Coulomb solution. In this instance, the surface 

Coulomb problem actuaily leads to a more symmetric ‘dual’ partner of an Archimedean 
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polyhedron than the original construction of pentakis by Catalan in 1862 [69]. Moreover, the 

minimum energy solution for N = 32 is not only geometrically regular, but it is also robust: 

in the range 12 < N s 65, it is the only equilibrium configuration common to both the Coulomb 

and logarithmic interactions [16]. 

In addition to the 5 Platonic solids and 26 Archimedean polyhedra and their duals, there 

are only 92 other convex polyhedra whose faces are entirely composed of regular polygons --- 

generally not all of the same kind [ 17, 181. These objects are geometrically irregular or non- 

uni*rm in the sense that there are no symmetry operations that transform a particular vertex into 

each of the other vertices in turn. Twenty-four of these non-uniform polyhedra may be inscribed 

in a sphere [68]. By comparing the corresponding numbers of vertices and faces it is easy to 

verify that none of these 24 objects match any of the surface Coulomb equilibrium 

configurations. In summary, therefore, out of a total of 2054 surface Coulomb states and 123 

convex polyhedra derived from classical geometry, there are only three configurations common 

to bdth sets. This number is also an upper bound because further extensions of the Coulomb 

problem to larger systems with N > 112 cannot yield any additional matches. These results 

show that the locally stable states of complex cooperative systems of this kind tend to have 

symmetries that differ from those that characterize the regular polyhedral con&urations of 

classical geometry. 

A. Dipole Moments. The distribution of the dipole moments of the surface Coulomb states 

can be used to answer two basic questions: (1) Are the configurations for large values of N so 

irregular that they are approximately equivalent to random networks of points on a sphere? And 

furthermore, (2) do these networks approach some kind of universal asymptotic statistical 
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distribution that is independent of the laws of repulsion that act between the individual charges? 

To settie these issues, it is convenient to retail from Eq. (1.2b) that the average value of the 

dipole moment of a random configuration of N unit changes on a sphere is an increasing function 

of N, i.e., (Id (NJ I&,,,, - N? As indicated in connection with Eq. (3.7), the appiicabiiity 

of this ‘random waik’ result to the Coulomb problem can be confirmed by computer triais. In 

particuiarthenforN = 100, the expectation value of the dipole moment of a random distribution 

is quite large, (Id (100) I>, - 9.2; whereas the entries in coiumn 5 of Table VIII show 

that 0 s (a (100) 1 s 0.0037 for aii 52 of the Couiomb states found by computer searches. 

This upper bound indicates that the metastable state with the highest energy and nearly maximai 

anguiardiversity(seebeiow)forN= 100 has a dipole moment that is about 4 x lo+ smaiier 

thanthatexpe&xiforarandomconfiguration. Figure8showsthatthistrendofsmalidipoie 

moments prevaiis for aii the Coulomb coxrfigurations in the range N s 112. The logarithmic 

ordhate scale of the graph extends down to lo* , which is near the limit of numericai accuraq 

for iarge systems, N - 0 (100). Table VIII shows that states with vanishing dipole moments 

are quite common for smaii vaiues of N, but tend to become less frequent as N approaches 100. 

Nevertheless, they don’t disappear entirely: the ground state with the largest capture basin for 

N= 112 apparentiy has a vanishing moment. These resuits clearly show that the charge 

distributions of the surface Couiomb configurations have &iusic reguiarities that persist despite 

the iack of the congruences or symmetries associated with the polyhedra of classical geometry. 

There are systematic variations of the dipole moments that depend on the strength of the 



force acting between the charges. According to Eq. (2.5), if the interaction is logarithmic, or 

‘soft’, ail iocaiiy stable confqprations have vanishing dipole moments [lq. At the other 

extreme, the ‘hard’ Tammes potential, 15 - ql”, n - QD, leads to states with sizable moments. 

Spot checks of some of the Tammes conf@rations found by Kottwitz’s computer searches [30] 

yield moments iarger than unity. All the avaiiabie information can be ,,’ ed as foiiows: 

Force Law szt? of Dipoie iuble?u Source of Resui2 

I< - q-1 0 analytical identity, Eq. (2.5) 

IF - q-2 0 - lo-* cmputertriais (N s 112) (4.2) 

I< - 7/p, ?t>l O(l) computertrials (N s 90) 
? 

wwo* comb- lemma, Eq. (1.B) 

Obviously, in the range 2 s N < O(lOO), there is no tendency for a convergence of the dipole 

moments associated with the logarithmic, Coulomb, or Tammes interactions. This diversity 

suggests the conjecture that for iarge vaiues of N difkent force laws lead to distinct asymptotic 

distributions of spherical charge nehvorks. Comprixms of trends in the Tammes and Coulomb 

angles (see Section 4E-1) also support this surmise. 

B. Distributions of Angles. Another measure of the regularity of the surf&e Coulomb 

txm@mtions is the angular diversity mzio in- in Eq. (1.1). This has a simple basis: 

If 5 and $ specify the locations of two charges on the surfkce of a sphere with unit radius, then 

the set of N(N-1)/Z angles, $# = cos-1 (5 . q), where qij s MI*, 1 sz ij s N, i * j, 
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describes the geometry of the charge distribution. The degeneracy of this set is a measure of the 

symmetry of the configuration. For instance, if 5 points are distributed arbitrarily over the 

surface of a sphere, there will generally be 5 x 4/2 = 10 distinct angles between pairs of points. 

However, in the case of the surface Coulomb problem, the unique equilibrium akangement of 

5 charges is a triangular dipyramid - one charge at the north pole, another at the south pole, 

and the remainin g three charges equally spaced around the equator. Obviously only three distinct 

angles appear between any pair of charges in this highly symmetric configuration: 180” occurs 

once, 120” occurs three times, and 90” occurs six times. The corresponding angular diversity 
. 

ratio therefore has the low value of 

(4.3) 

Similarly, the clustering of the irregular N = 11 and 13 configurations around the highly 

symmetric icosahedron at N = 12 is immediately apparent from the Da fluctuations, without the 

need for any graphical comparisons; viz. 

N 

11 

12 

13 

Da (N) De (N) Id (WI 

36.4% 45.5% 0.0132 

4.5% 8.3% 0 

37.2% 46.2% OAKI 
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This array shows that all three indices of regularity - the angular diversity ratio Da, the energy 

diversity ratio DC [Eq. (3.1611, and the dipole moment Ial - yield consistent results. These 

correlations also appear in the detailed list of values in columns 5,9, and 10 of Table VIII in 

Appendix B, as well as in the graphical summaries in Fig. 9 and Fig. 10. In particular, the 

parallel increase of both the angular and energy diversity ratios confirms once again the general 

conjecture that increasmg complexity tends to be associated with decreasing symmetry. For 

instance, the first configuration that is so irregular that all of its vertices are inequivalent 

(4 = loO%), and most of its edges have different lengths (Da = 992%) occurs at N = 35. 

Fig. 9 shows the development of this trend in graphical form. At N = 102, 30 out of a total 

of 54 locally stable states have energy and angular divers@ ratios in excess of 95%. These 

ibeguiarities are penmive for N - O(100). 

The distribution of vahres in the sets of angles Qii is also useful for comparing the 

structures of different charge configurations belonging to the same value of N. Since the data 

in Section 3B-3 show that the energies of all of these locally stable states are very nearly the 

same- within 0.007% for N = 102 - it is possible that some of these states also have 

geometrical resemblances. Well known examples of sets of complex configurations with 

common ‘backbones’ and minor ‘peripheral’ variations include the tautomers and conformers of 

structural chemistry. However, everyone of the surface Coulomb states with non-identical 

energies appears to have a distinct structure. For instance, at N = 102, there are 87 

configurations (cf. Table I) each of which is described by a I@, - set with 5151 angles. 
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Comparisons show that there are 33 sets that occur twice: each matching pair has the same 

energy and is geometrically related by an improper isometry --- evidently these are just the 

enantiomeric configurations. Apart from these degeneracies, there are then a total of 87- 66/2 

= 54 different states. Further comparisons of the associated angular sets, I$, 1 s k SI 54, 

show that the maximzun fraction of coincidences among any pair of these sets is bounded by 9%. 

Computer surveys for all N in the range 50 < N s 112, where multiple states become more 

frequent, indicate that this overlap estimate is actually a general result; i.e., if V(N) denotes the 

fraction of common angles, then 

(4.5) 

where k + I, and the set intersections exclude enantiomeric pairs. The low value of this overlap 

ratio shows that it is implausible that configurations with non-identical energies share any major 

structural features such as common ‘backbones’. 

The overlap bound in (4.5) is based on very conservative angle matching criteria. When 

N g 100, the precision of the angular coordinates of the individual charges in rare states can 

decrease to about one part in 16. This is degraded further by the computation of the inter- 

particle angle sets qii. Finally, the coarseness of the matching may be relaxed even more to 

ensure that all the enantiomeric states are correctly paired up. Consequently, the actual values 

of the overlap ratios V(N) may be significantly smaller than the bound shown in (4.5). For 
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example, at N = 84, all 16 states with distinct energies are sufficiently irregular so that the 

positioning conventions of Section 2B yield unique orientations. Under these circumstances, the 

charge coordinates of all of these states - which are known to 7 figures, (2.9c) - can be 

compared directiy.- Extensive spot checks have failed to turn up even one matching charge 

position, apart from the common fixed point at the north pole. It seems, therefore, that the 

exponential increase in the number of states for larger values of N(> 50) is accompanied by a 

tremendous proliferation of geometric structures. 

C. Coulomb Polyhedra: Regular Configurations. The coexistence of order and disorder 

in the geometric structure of the surface Coulomb states is illustrated in Fig. 11. This diagram 

shows the equilibrium configuration of 19 charges on the surface of a sphere. The apparent 

symmetry of this arrangement is highlighted by the auxiky polyhedron whose vertices coincide 

with the charge positions. The faces and edges of this polyhedron can be constructed with the 

help of some computer graphics: Given N ( >3) points on the surface of the sphere, the set of 

ail combinations of 3 points determines a maximum of N (N- l)(N-2)/6 planes. Assokted 

with each plane and triple of points -- located by the unit vectors 5, j = a, p, y - is another 

vector ?’ extending from the center of the sphere to the plane and perpendicular to it. Since the 

plane and sphere intersect in a circle (C& all the scalar products Fc - 5 are equal Suppose 

now that Fk ranges over the positions of all the charges nor included in the 5 triplet -- i.e., the 

set { 5 }y\F=, Fa, FY --- and furthermore that Fk . ’ Fc s 5. ’ Fc; then the plane containing the 

charges a, p, y is a face of the polyhedron. Geometrically, this inequality simply means that 
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the sphericai cap bounded by Cafir contains no other charges. In cases where two or more 

charge uiplets determine coincident pianes, the associated polyhedron face is bounded by four 

or more vertices. Figure 11 includes an example of this situation. The end result of this 

construction is that the Couiomb polyhedron for N = 19 has a total of 33 faces. The 

uxresponding number of edges (e) then follows. from Euler’s formuia 

N+f-2=e, 

or (4.6) 

19 + 33 - 2 = 50. 

Cohmm 11 of Table VIII in Appendix B lists the number of ihces (0 of the Coulomb polyhedra 

forailcon@urationsintherauge4 s N s 112. 

: The symmetries of the Couiomb polyhedron in Fig. 11 are reflected in the low vaiues of 

the energy diversity, De = 7119 - 36.8% [Es. (3.1611, and the angular diversity, 

Del = 51y171 - 30.4% [Es. (4.3)]. In paxticuiar - apart from the charge at the north pole with 

the least partial energy -aiitheother18chargesoccurinpairs: eachpartnerwiththesame 

partial energy and longitude, but the two charges diEering by 180” in iatitude. This symmetric 

pattern has a small but non-vanishing dipole moment, j&19) 1 = O.ooO 135, pointing towards 

the north pole. The contrasting irreg&u features of this polyhedron arise from a lack of 

congruence among the edge lengths. No more than four edges have equai lengths. In fact, the 

50 edges are composed of 10 gruups of 4 congruent edges and 5 groups of 2 congruent edges. 

Consequently the polygonal faces in Fig. 11 are too irreguiar to fit into the standard set of non- 

uniform polyhedra [17,18]. 
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A useful measure of the degree of congruence in the Coulomb polyhedra is the ratio of 

the number of distinct edge lengths to the total number of edges. Since the edge lengths are 

determined by the central angles between the corresponding vertices, this congruence measure 

is equivalent to a nearest neighbor angular dive&y ratio analogous to (4.3), viz. 

Dr(N) = 100 number of distinct edge lengths ( JL) 
toti number of edges (e) 

(4.7) 

Whereas the angular diversity D, is a global index of the variety of all possible angles between 

charges, 0,” - 1s a strictly local measure that takes into account only the diversity of angles 

between adjacent charges. In the case of the N = 19 polyhedron, both the local and global 

measures of regularity yield nearly the same result 

D,R”(19) = 100 x g = 30.0% -- 30.4% - 100x 52 = D,(19). 
171 

Computer surveys of all the other Coulomb polyhedra with N vertices in the range 

4 < N s 112 show a similar equivalence. If this trend extends beyond N - 112, it would 

simplify the identification of regular charge patterns: estimates of D,” (N) for iV* 1 require 

at most the comparison of 3N nearest neighbor angles. 

Although the dominant geometric trend of the Coulomb states is one of increasing 

irregularity for larger values of N, the sporadic appearance of small percentages among the 
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diversity ratios listed in columns 9 and 10 of Table VIII shows that some ordered patterns persist 

up to the limits of the computer explorations. The distribution of these special states is indicated 

graphically by the set of points in’the 0 - 20% bands in Fig. 7 and Fig. 9. Quantitative 

information concerning the most regular configurations is summarized in Table V. For 

reference, the entries in the first line recapitulate the data for the icosahedron (N = 12) - the 

largest Platonic solid whose vertices coincide with the solutions of the logarithmic, Coulomb, 

and Tammes problems. Comparisons with the indices for N = 16,24, 32, and 72 show that 

these new polyhedra are aiso highly symmetk The two N = 16 configurations are depicted 

in Figs. l(a) - l(d): they illustrate the interesting poiut that the lowest energy state is not . 

necessarily the most symmeh. Table VIII shows that this situation recurs at several other 

values of N; e.g., the most qmmetric N = 82 pattern is ranked eighth in order of kreasing 

energy, and has an extremely low probability of ouxmnce. The N = 24 Coulomb polyhedron 

resembles the snub cube, one of the semi-regular Arc- solids. However, the Coulomb 

inmactions distort the symmetq of the classical polyhedron: Whereas the snub cube has 32 

triangular and 6 square faces, all with equal edges, the faces of the Coulomb polyhedron include 

24 scalene triangles [41]. The N = 32 situation corresponds to the ‘near miss’ of the pentakis 

dodecahedron dkussed previously in connection with Eq. (4.1). In this case the Coulomb 

polyhedron is slightly more symmetric than its classical countqart. The lowest energy Coulomb 

stateforN= 72 is also conspicuously symmetk. All faces of this polyhedron are triangular. 

There is no resemblance to the aspherical N = 72 ‘fuiierene’ cage containing 12 pentagons and 

26 hexagons [70]. 
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Table V 

Reguiar Coulomb Polyhedra 

N Eb f e/P R’ o,“<%,’ 
Nearest neighbor Multiplicity0 
angles (degrees) 

12 49.165 20 30/l 

16* 92.911 28 4214 

16 92.920 26 4014 

24’ 223.347 38 60/3 

32 412.261 9012 

72 2255.001 

60 

140 210/4 

1 3.3 63. 4349 

2 9.5 48.9362 
52.5452 
54.6580 
61.8004 

2 10.0 50.1269 
52.0044 
54.2578 
63.0252 

1 5.0 42.0653 
45.0400 
45.7102 

2 2.2 37.3773 
41.8103 

2 1.9 24.4917 
24.9262 
25.4334 
28.2068 

30 

6 
12 
12 
12 

8 
8 
16 
8 . 
24 
24 
12 

60 
30 

60 
30 
60 
60 

‘Number of charges or vertices. 
bCoulomb energy, Eq. (3.5). 
‘Number of faces, Eq. (4.6). 
‘Number of edges/distinct edge lengths, Eq. (4.7). 
“Number of distinct partial energies, Eq. (3.16). 

Diversity ratio, Eq. (4.7). 
‘Number of tunes this angie appears. 
bEnantiomeric states. 
’ 2 sin-’ [‘h (2 - 2/51n)“2]. 
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The entries in Table V do not continue beyond N = 72 because the more complex 

symmetric polyhedra contain at least 11 different nearest neighbor angles. Nevertheless, the 

ordered patterns stand out clearly among the increasing variety of irreguiar polyhedra. For 

example, at N = 112, there are at least 60 localiy stable states with distinct energies. The first, 

second, and tenth levels are clearly different because their nearest neighbor ratios 

0,” m. (4.7)] are 10.5%) 8.27 o , and 24.1% respectively; ail the other states have angular 

diversities exceeding 45 % . The marked regularity of the second level is also apparent from the 

small number of partial charge energies - equivalent to 10 types of polyhedron vertices --- and 

the symmetric grouping of the 330 nearest neighbor angies: these occur in 26 sets of 12 equal 

angies, and a residual set of 18 angies, aiso aii aiike. Unraveling the complex order of these 

- large polyhedra is a challenging problem in ‘physical geometry. 

D. Enantiomorphic Cotigurations. A set of points on the sphere may be transformed by 

isomenies or congruence mappings that preserve the distances between all pairs of points. All 

isometries, in turn, can be built up from three basic types of transformations [71]: (i) rotations 

about an axis; (ii) mirror reflections in a plane; and (iii) paraiiel displacements of ail points. If 

the mappings are restricted to a fixed sphere, paraiiel displacements play no role, and the 

congruence transformatiox~~ reduce to proper isomenies or (rigid body) rotations, and rotatory 

rejktions composed of a reflection and a rotation whose axis is perpendicuiar to the mirror 

[13,72]. Cent& inversions, in which the coordinates of all points are reflected in the origin 

of the sphere, i.e., 7 + - F, are special cases of rotatory reflections in which the rotation is a 

half-turn. 
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If a pattern Ci of identical charges on the surface of a sphere is sufficiently irregular --- 

though not necessarily random -- then the only isometric mapping, I: Ci - CP that yields a 

final configuration Cf indistinguishable from the initial state is the identity transformation. In 

contrast, highly symmetric configurations such as the icosahedron are invariant under a great 

variety of isometric transformations, e.g. the composite group A, x Ci [ 141. The set of 

solutions of the surface Coulomb, logarithmic, and Tammes problems interpolates between these 

two extremes: In all three cases larger values of N are associated with less symmetric point 

groups [16, 30, 41, 421. However, as emphasized in connection with the dipole moments in 

Section 4A, even Coulomb states whose only isometric symmetry is the identity transformation 

have ordered structures. 

When N ‘5 50, the surface Coulomb states tend to cluster in pairs, each with the same 

sequence of partial energies, equal total energy, and nearly equal probability of occurrence. 

Suppose that @ (N) and @ (N) denote such a pair of states. Since the orientation conventions 

established in Section 2B automatically include rotational degeneracies, it remains to check 

whether these states are related by an improper isometry. In practise, this mirror symmetry can 

be verified by picking a state, say &” (N), and reflecting it in an arbitrary plane through the 

center of the sphere. The resulting con@uration is then rotated so that the charge with the 

lowest partial energy is positioned at the north pole, 8 = Q, = 0, and the charge with the next 

lowest partial energy is at zero longitude, 8 = 0. If all the partial energies are different, this 

orientation is unique, and the final configuration will coincide with e (N). In case there is a 
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degeneracy in the par&i energies, some auxihary comparisons may be required. 

The disthaions between proper and improper isometrics can be iilustrated with two 

simple examples: Figure l(b) is a pian view of the symmetric four-ring structure of the 

N = 16 metastabie Coulomb solution, 5 (16). Obviousiy this pattern is invariant under 90” 

rotations and reflections - if the rings are copied on a transparency, and the transparency is 

flipped over, the reversed image wili coincide with the originai pattern. This symmetry is 

broken by the greater complexity of the two N = 16 ground states. If Fig. l(d) is copied, tire 

imageontheflippedbransparency cannot be rotated into coincidence with the originai pattern, 

but it will match the other ground state coniiguration. In general, any configuration that cannot 

be brought into coincidence with its mirror image by rotations is chirczl or enwzriomo@ic. 

.,Hence the f&nil&u example of right (R) and left (L) handedness suggests the notation 

C$ (16) und < (16) forthetwoN = 16chiralgroundstates. Butforarbitrarypattems-in 

fact, even the simple perspective view in Fig. 1 (c) - there are no obvious pictorial cues of 

handedness, or a ‘screw-sense’, and chirality has to be checked by other means such as 

exhawtive computer comparisons (733. 

The a&risks in cohrmn 3 of Table VIII mark the enantiomeric states of the surface 

Coulomb problem. Comparisons show that N = 15 is the common threshold for the appearance 

of chirai conf@rations in the surface Coulomb, logarithmic, and Tammes problems [14, 16, 

391. Furthermore, in the range 15 s N s 65, the ground states of the logarithmic potentiai are 

chiral if and only if the ground states of the associated surface Coulomb problem are chirai [ 161. 

However, the results for N = 15, 16, 19, 21, etc., show that there is no such one-to-one 
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correspondence between the ground states of the surface Coulomb and Tammes problems [30]. 

There are interesting connections between chirahty, ‘chaos’, symmetry breaking, and 

cryptography in the surface Coulomb problem. Let M[c (15)] - c (15) represent the 

mapping of a randomly chosen initial state of 15 charges, ek (15)) to one of the pair of chit-al 

ground states, c (15) by means of an energy minimizing algorithm M. Suppose further that 

the initial cotiguration is sufficiently irregular so that it can be verified that eb (15) is in&d 

a chit-al state with a mirror image dti (15). Then it can be shown that the minimizing 

algorithm of Section 2B, as implemented on a computer, preserves chirality. (An ana.lytic 

‘” analogue is discussed in [74] .) This leads to an array of parallel mappings that can be extended 

to include marry initial states: 

strings of (pseudo) random numbers 

1 1 

sets of (pseudo) random 
initial states 

locally stable energy minima: 
teamiMlstates 

cm (15)) {& (15)) 

(4.9) 

This diagram shows that the net effect of the chjrality preserving map M is to transfer the ‘L’ 

and ‘R’ labels from the ground states up to the level of the random initial states, and to split 

these into two corresponding subsets {eh(15)I and @I& (15)). Since the initial configurations 
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are distributed uniformly over the surface of the sphere, slight changes in the angular coordinates 

of the charges in any particular state e* (15) can transform it into a C$& (15) state, and tice 

versa. Consequently the end resuk of an energy minimization can be sensitively affbcted by 

slight perturbations of the initial conditions: This mix of randomized states and unstable 

evolution is a basic chamckristic of ‘chaotic’ dynamics [75]. 

Chiral symmetry breaking can occur in a variety of ways. For instance, varying the 

indexninthepowerlaw I< - 5/-” can induce transitions between chiraI and non-choral states. 

The simplest illustration is provided by N = 16. In this case the ultra-repulsive Tammes 

potential I< - c(-n, it 4 ~0, can be approximated by choosing n = 1 310 720 [15, 301. Both 

geometrical arguments [76] and computer trials then show that the N = 16 Tammes solution is 

a symmetric four-ring structure closely resembling the pattern in Figs. l(a) and l(b). (The 

latitudes of the rings are f 13.632” and f 51.490” in the Tammes case, and 

* 11.342” Md f 51.684” in the Coulomb case.) But the lowest energy solution for the surface 

Coulomb problem is quite different: It is split into a pair of chiraI states one of which is shown 

in Figs. l(c) and l(d). Evidently then, as the potential index n decreases from 1 310 720 to 1, 

there must be at least one threshold where chiraI states appear. 

The chiral ‘L’ and ‘R’ indices are equivalent to a binary alphabet. In principle, therefore, 

it is possible to construct any desired string or ‘message’ with an appropriate series of 

c (15) a?-Jd e (15) co nfi gurations. But as (4.9) shows, each ground state configuration can 

be enciphered in an enormous number of ways by the mappings M [{ek (15))] - c ’ (15). 
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For instance, on a double precision computer, the number of initial states with a particular 

chirahty can easily exceed 10”. The element of ambiguity or concealment then lies in the 

assignment of a specific ‘L’ or ‘R’ label to any one of these random initial states. Although it 

is easy to verify that a particular state is chiraI, the spatial arrangement of charges is usually too 

complex to exhibit an obvious ‘handedness’ --- it is necessary to go through an explicit energy 

minimizing sequence leading to either q (15) or C$ (15) in order to identify whether an initial 

state is ‘L’ or ‘R’. 

The strings of random numbers in the top Iine of (4.9) refer to the angular positions of 

the charges in the initial configurations. In particular, if the latitudes and longitudes of the 

charges are specified to an accuracy of 12 decimals, then the configurations ek (15) can be 

represented by strings of 15 x 2 x 12 nominally random digits, idi}?, 4 = 0, 1, .., 9. The 

security of this ‘chiral-energy’ encipherment therefore relies both on the algorithmic complexity 

of the mapping M and the tremendous redundancy of the correspondence 

(4.10) 

In analogy with other schemes involving ‘trapdoor’ or ‘one-way’ functions [77J, eq. (4.10) is 

hard to invert because the reversion is a set-valued function that associates an entire set with a 

particular input [78]. 

In practice, the charge coordinates of the initiai configurations are derived from 

deterministic pseudo-random number generators. The complete sequence of the &k&energy 
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encipherment is therefore a combination of (4.9) and (4.10), i.e., 

pseudo-random 
+ idi)? -- ti$ (15): M[ti, (15)] - e (15) - R or L. (4.11) 

number generator 

Since the number generators can be programmed to produce any sequence, Eq. (4.11) is a slow 

but feasible means of encipherment. 

The concealed propagation of order through pseudo-random numbers and geometric 

complexity also adds a novel twist to the problem of chiral bias. This concerns the observation 

that naturally occurring proteins are almost exclusively composed of chiral amino acids of the 

‘L’ variety [24,25]. Although these compounds are far more complex than the surface Coulomb 

states, the basic production mechanisms are presumed to be similar in both cases: The 

underlying idealization is that a uniform stat&&l mix of initial states evolves towards 

equilibrium in a symmetric pair of potential wells whose minima correspond to states of opposite 

chirality. Since processes of this kind always lead to a racemic mix of final states, the observed 

‘handedness’ of the biosphere is usually attributed to a critical ‘fluctuation (‘spontaneous’ 

symmetry breaking), or a fundamental chiral force (e.g., B - decay) that introduces an 

asymmetry in the potential wells [24, 251. Equation (4.11) indicates still another possibility: 

that the final chirality is actually predetermined by a set of algorithmic instructions at a non- 

geometric level. It is certainly feasible to generate long strings of pseudo-random numbers that 

will consistently produce ‘L’- handed initial configurations [23]. The appearance of a racemic 

or unbiased mix of initial states is therefore an illusion -- the ‘L’ - die has already been cast 
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before the game begins. 

The binary code of chirality disappears when (4.11) is rewritten for 14 charges. The 

etsenhl difference in this case is that the ground state is not enantiomorphic even though the 

pseudo-random initial configurations may be chiral, i.e., 

pseudo-random 

number generator 
- idi};= -- tid (14): M[c (1411 4 C* (14). (4.12) 

The tmnsition from (4.12) to (4.11) illustrates another threshold of structural complexity. When 

there are 15 charges represented by 30 blocks of 12 digit numb - as in Bq. (4.10) - each 

string of 360 digits specifies a unique dichotomic variable, an ‘L’ or an ‘R’. However, if the 

strings are parsed differently - as in Eq. (4.12) - they are too simple to generate the chiral 

alphabet. By this means the threshold of a geometric property is expressed as a minimum W 

complexity requirement for a coding algorithm. 

E-l. Coulomb Angles and Tammes Angles. The Tammes problem is equivalent to fmding 

the largest angular diameter 9, (A!) of N congruent caps that can be packed on the surface of 

a sphere without overiapping [ 12-141. Column 7 of Table VIII lists the optimum values of 

9, (IV) oteihed by Kotmit~ [30] and Tarnai [79] for 3 s N s 100. Clearly, 8,(N) is a (not 

strictly) decreasing function of N, with an asymptotic dependence 

e,(N) - (81r/3~N)‘~ , for N s 1. There is an analogous angle for the surf&e Coulomb 

problem ec (N) determined by the minimum angular separation between neighboring charges in 
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a locally stable configuration [39]. Several examples are contained in column 7 of Table V: 

ec (16) = 48.9362” , ec (24) = 42.0653”, e, (32) = 37.3773” , etc. A comprehensive survey 

is given in column 6 of Table VIII. Since the optimization in the surf&e Coulomb problem is 

carried out with respect to total energy rather than nearest neighbor separations, the two sets of 

angles are related by 8,(N) > ee (N) when N > 6, N + 12. ec (N) is a non-monotonic but 

generally decreaGn g function of N with au asymptotic estimate resembling the Tammes result; 

e,(N) ” (4n/N)W, $2~ N>l. Ifthisestima&wereaccWte toleadingorderinN,thenthe 

relative difference between the two sets of angles would approach a constaut value for large N, 

[e#!) - e,(m]le#o - 1 - 3q2’l” - 0.07, N w 1. (4.13) 

Figure 12 shows this relative Wkrence in graphical form when e&N) is averaged over all 

locally stable states belonging to a given value of N. Despite the prominent fluctuations, the 

overall trend is roughly con&ent with (4.13). 

The basic purpose of these comparisons is to see whether the confQurations of points 

have some kind of asymptotic regularity for large values of N that is insensitive to the precise 

nature of the underlyillg interacti~. If the trends in Fig. 12 can be extrapolated beyond 

N - 112, ~itw~beanindicatioattratthelocai~~oftfiecoulomb~~~ - 51, 

and the Tammes interaction [< - ~l-1310~ retain a distinct chamcter even for arbitrarily large 

values of N. 


